
SMART CONTRACT AUDIT

May 24th 2023 | v.	1.0

score

97

PASS
Zokyo Security has concluded that

this smart contract passes security

qualifications to be listed on digital

asset exchanges.

Security Audit Score

1

Struct Finance Smart Contract Audit

This document outlines the overall security of the Struct Finance smart contracts evaluated
by the Zokyo Security team.

Technical​ ​Summary

The scope of this audit was to analyze and document the Struct Finance smart contracts
codebase for quality, security, and correctness.

There were 0 critical issues found during the audit. (See Complete Analysis)

Contract Status

low Risk

It should be noted that this audit is not an endorsement of the reliability or effectiveness of
the contracts but rather limited to an assessment of the logic and implementation. In order
to ensure a secure contract that can withstand the Ethereum network’s fast-paced and
rapidly changing environment, we recommend that the Struct Finance team put in place a
bug bounty program to encourage further active analysis of the smart contracts.

https://docs.google.com/document/d/1Zb73rufaUUCg_29wMUWOyk6pNbPBV344InWdDp3nvh0/edit#heading=h.y413rcm4r1gs

2

Struct Finance Smart Contract Audit

7Complete​ ​Analysis

5Executive Summary

6Structure​ ​and​ ​Organization​ ​of​ ​the Document

3Auditing Strategy and Techniques Applied

Table of Contents

Auditing Strategy and Techniques Applied

3

Struct Finance Smart Contract Audit

Within the scope of this audit, the team of auditors reviewed the following contract(s):

protocol/products/traderjoe/FEYTraderJoeProduct.sol

protocol/products/traderjoe/FEYTraderJoeProductFactory.sol

protocol/yield-sources/TraderJoeYieldSource.sol

protocol/common/GACManaged.sol

protocol/tokenization/StructERC1155.sol

protocol/tokenization/StructSPToken.sol

libraries/helpers/Constants.sol

libraries/helpers/Errors.sol

libraries/helpers/Helpers.sol

libraries/logic/Validation.sol

libraries/types/DataTypes.sols

The source code of the smart contract was taken from the Struct Finance repository:  
https://github.com/struct-defi/struct-core/tree/audit/zokyo-feb-2023

Last commit: c7785ea69d5bfa00887e0be074606f7144aa5ac3

https://github.com/struct-defi/struct-core/tree/audit/zokyo-feb-2023

01 Due diligence in assessing the overall
code quality of the codebase.

02 Cross-comparison with other, similar
smart contracts by industry leaders.

03 Thorough manual review of the
codebase line by line.

During the audit, Zokyo Security ensured that the contract:

Implements and adheres to the existing standards appropriately and effectively;

The documentation and code comments match the logic and behavior;

Distributes tokens in a manner that matches calculations;

Follows best practices, efficiently using resources without unnecessary waste;

Uses methods safe from reentrance attacks;

Is not affected by the most resent vulnerabilities;

Meets best practices in code readability, etc.

4

Struct Finance Smart Contract Audit

Zokyo Security has followed best practices and industry-standard techniques to verify the
implementation of Struct Finance smart contracts. To do so, the code was reviewed line by
line by our smart contract developers, who documented even minor issues as they were
discovered. In summary, our strategies consist largely of manual collaboration between
multiple team members at each stage of the review:

5

Struct Finance Smart Contract Audit

Executive Summary

There was no critical issue found during the audit. Our auditing team was discovered issues
with medium and low severity, and couple of informational issues. All the mentioned findings
may have an effect only in the case of specific conditions performed by the contract owner
and the investors interacting with it. They are described in detail in the “Complete Analysis”
section.

The issue has minimal impact on the
contract’s ability to operate.

Low

The issue has no impact on the
contract’s ability to operate.

Informational​

The issue affects the ability of the
contract to compile or operate in a
significant way.

High

The issue affects the ability of the
contract to operate in a way that
doesn’t significantly hinder its
behavior.

Medium

The issue affects the contract in such
a way that funds may be lost,
allocated incorrectly, or otherwise
result in a significant loss.

Critical

For the ease of navigation, the following sections are arranged from the most to the least
critical ones. Issues are tagged as “Resolved” or “Unresolved” or “Acknowledged” depending
on whether they have been fixed or addressed. Acknowledged means that the issue was
sent to the Struct Finance team and the Struct Finance team is aware of it, but they have
chosen to not solve it. The issues that are tagged as “Verified” contain unclear or suspicious
functionality that either needs explanation from the Client or remains disregarded by the
Client. Furthermore, the severity of each issue is written as assessed by the risk of
exploitation or other unexpected or otherwise unsafe behavior:

Structure​ ​and​ ​Organization​ ​of​ ​the Document

6

Struct Finance Smart Contract Audit

Complete​ ​Analysis
 

Findings summary

7

Struct Finance Smart Contract Audit

Resolved

Resolved

Acknowledged

Acknowledged

Acknowledged

Unresolved

Medium

Medium

Low

Low

Low

Low

RiskTitle# Status

Resolved

Resolved

Resolved

Resolved

Acknowledged

Acknowledged

Resolved

Medium

Low

Medium

Medium

Low

Low

Low

3

6

1

4

10

8

13

2

5

11

9

7

12

Tokens can get stuck while calling deposit()

Authorization of only EOAs can break multisigs

Centralization of
emergencyRemoveLiquidity()

Centralization of setFEYProductImplementation()

Misleading value assignment to poolId

Missing zero address checks

trancheDurationMax can be less than
trancheDurationMin

Centralization of Pausable and possible Denial of
Service

Exposure to revert due to wrong operation.

Missing Input Validation in StructPriceOracle

Investors can lose funds due to delay in
withdrawal

Bypassing require checks possible

Iterating allProducts array can cause the gas
limit to exceed

8

Struct Finance Smart Contract Audit

Unresolved

Acknowledged

Acknowledged

Acknowledged

Informational

Low

Informational

Informational

RiskTitle# Status

Acknowledged

Unresolved

Unresolved

Unresolved

Resolved

Informational

Informational

Informational

Informational

Informational

19

25

18

23

21

24

16

22

20

initialize() can be called by anyone

Gas Optimization

Gas Optimization

Wrong Function visibility.

Critical function rescueTokens it's not emitting
event

Gas Optimization

Fees can be set greater than 100%

Governance can indefinitely disable withdrawal
of user funds

Inverted naming of variables

AcknowledgedLow17 No check for zero amount

Medium Resolved

Centralization of emergencyRemoveLiquidity()

In contract FEYTraderJoeProduct, the emergencyRemoveLiquidity() function can be used by
a malicious admin to withdraw all the liquidity from the contracts at any point of time or
state.

Recommendation:

It is advised to add more decentralization to the contract and roles, such as using a
governance mechanism or a multisig.

Comments:

The client assured that they would be using a multisig initially before moving on to a
Governance model.

Medium Resolved

Centralization of Pausable and possible Denial of Service

In contract FEYTraderJoeProduct, The global and local pausable functionality can be
exploited by a malicious admin to deny users from withdrawing their funds for a very long
time. This would also be equivalent to a Denial of Service attack if carried out.

Recommendation:

It is advised to add more decentralization to the contract and roles, such as using a
governance mechanism or a multisig.

Comments:

The client assured that they would be using a multisig initially before moving on to a
Governance model.

9

Struct Finance Smart Contract Audit

Medium Resolved

Tokens can get stuck while calling deposit()

In contract FEYTraderJoeProduct,

If msg.value != 0 AND address(trancheConfig[_tranche].tokenAddress) != nativeToken, when
calling the deposit() and depositFor() functions, it will result in the user's funds being stuck
in the contract. It is advised to refund this amount in case the user sends AVAX and the
tranchtokenAddress is not nativeToken.

The same issue also exists in the _makeInitialDeposit() function of the factory contract.

Recommendation:

It is advised to add mechanisms in the contract to allow investors from withdrawing their
stuck tokens in the contract. Or else refund the tokens immediately in case the tokens are
stuck while calling the function.

10

Struct Finance Smart Contract Audit

11

Struct Finance Smart Contract Audit

Medium Resolved

Centralization of setFEYProductImplementation()

In contract FEYProductFactory, the implementation address of the Product contract can be
changed anytime by a malicious admin. This can result in users losing their funds to the
attacker via a malicious implementation contract, if new products are deployed using this
implementation address.

Medium Resolved

Exposure to revert due to wrong operation.

In contract DistributionManager.sol, the function distributeRewards

Recommendation:

It is advised to disallow changing of the implementation contract. It is also advised to add
more decentralization to the contract and roles, such as using a governance mechanism or a
multisig.

is exposed to a panic revert (leads to Denial of service) in some valid cases if the one of
totalAllocationPoints and totalAllocationFee is zero.

Recommendation:

Add zero amount check.

12

Struct Finance Smart Contract Audit

low

Authorization of only EOAs can break multisigs

The onlyEOAOrRole() modifier in the GACManaged contract, allows only EOAs to interact
with the contracts that use this modifier. Smart contracts ideally should NOT be "not
allowed" to interact with the client's contracts as it could break the client's smart contract's
support with multisig contracts of users, which in turn is not advised for security. This is
because usage of multisig contracts or wallets to interact with smart contracts is considered
a good security practice.

For example, if a user is using Gnosis safe to interact with the Product contract, the
interaction will not be allowed as Gnosis safe(i.e. multisig) is a smart contract.

Recommendation:

It is advised to remove disallowing smart contracts from interacting with the client's smart
contracts unless absolutely necessary.

13

Struct Finance Smart Contract Audit

low

Bypassing require checks possible

In contract FEYTraderJoeProduct, It is possible to deploy Product contract without the
factory contract. If someone accidentally deploys the Product contract without the factory,
then all the critical requirement checks used in the _validateProductConfig() can be
bypassed.

Recommendation:

It is advised to make the FEYTraderJoeProduct contract abstract in order to avoid this issue.

Comment:

The client stated that If the product contract is deployed by someone (without the factory),
then the frontend would need to be exploited to trick the users to deposit funds into the
malicious contract. And that Direct interaction with the malicious contract is very unlikely, as
the users could easily read the params from the explorer if verified.

low

Missing zero address checks

In contract FEYTraderJoeProduct, there is missing zero address for _spToken,
_initConfig.configTrancheSr.tokenAddress, _initConfig.configTrancheJr.tokenAddress,
_nativeToken, _structPriceOracle, _distributionManager and _yieldSource in the initialize()
function.

Recommendation:

It is advised to add zero address checks for the same to avoid incorrect values being
assigned.

Comment:

The client stated that the products will be mostly created using the frontend so the users
don’t have to worry about the addresses. And that even if they added zero address check,
there are many other addresses whose private key are unknown. They further added that if
users or other protocols are interacting with the contract directly they need to be extremely
careful when entering the input params.

14

Struct Finance Smart Contract Audit

low

Investors can lose funds due to delay in withdrawal

In contract FEYTraderJoeProduct, the rescueTokens() function allows an admin to withdraw
all the tokens from the contract after 3 weeks from the tranche end time. Ideally, the
investors should be first allowed to withdraw their funds first, or the contract can push the
funds to them before calling rescueTokens(). Otherwise, it could result in a malicious admin
withdrawing investor's tokens, in case the investors forget to withdraw their tokens after 3
weeks from the tranche end time.

Recommendation:

It is advised to allow pushing of tokens to the investors or allow automatic withdrawal of
tokens (such as with Chainlink keepers) to investors before rescue tokens.

Comment:

The client acknowledged this issue, stating that they’ll be using multisig for Governance
initially and that the 3 weeks time works as a cooldown period. They said that if the users
forget to withdraw their funds, the Struct team will withdraw on their behalf and we will send
it to the investor's address.

15

Struct Finance Smart Contract Audit

low

Misleading value assignment to poolId

In contract TraderJoeYieldSource, according to the line: 175 in the constructor,

 poolId = isFarmExists ? _poolId : 0;

The poolId to _poolId in case the Farm exists. But it is entirely possible that the poolId is set
to 0 even when the Farm exists by passing the _poolId parameter as 0 in the constructor.
This would be contradictory to the fact that the poolId is set to 0 when the isFarmExists is
false (i.e. the Farm does not exist) according to line: 175.

Recommendation:

It is advised to disallow passing _poolId as 0 in the constructor parameter to avoid
unintended issues and logical flaws.

Comment:

The client said that the YieldSource contracts will be deployed manually by the Struct team
and that they will be validating the parameters before deployment

16

Struct Finance Smart Contract Audit

low

Missing Input Validation in StructPriceOracle

Note: Attacker = (Malicious governance)

Overview: The StructPriceOracle contract is used to fetch the latest price of the given assets
using Chainlink's price feed. The contract allows the owner to set or replace sources for the
assets. However, the contract does not have proper input validation in the
_setAssetsSources function, which allows an attacker to add a malicious asset source and
control the price returned by the getAssetPrice function.

Vulnerability: The vulnerability exists in the _setAssetsSources function, where the contract
allows the owner to set or replace sources for the assets without proper input validation. An
attacker can add a malicious asset source that returns an incorrect price. This can lead to
incorrect valuation of the assets, which can cause severe financial loss to the users.

Attack Scenario: An attacker can create a malicious asset source that returns an incorrect
price. The attacker can then call the _setAssetsSources function with the malicious asset
source address and set it as the source for an asset. When the getAssetPrice function is
called with the asset address, the malicious asset source will return the incorrect price,
which can cause the valuation of the assets to be incorrect. This can lead to financial loss for
the users.

Impact: The impact of this vulnerability can be severe, as a Malicious Owner can manipulate
the price of an asset and cause financial loss to the users. This can also affect the valuation
of the assets, which can cause further financial loss. The users can lose trust in the platform,
and the reputation of the platform can be damaged.

Recommendation:

To mitigate this vulnerability, the contract should have proper input validation in the
_setAssetsSources function. The contract should validate that the address of the asset
source is a valid Chainlink aggregator address. Additionally, the contract can also implement

17

Struct Finance Smart Contract Audit

a whitelist for the asset sources, where the owner can only set the sources from the
whitelist. This will prevent the owner from adding a malicious asset source.

Comment:

The client will be using a multisig for governance operations initially. So the scenario is very
unlikely to happen as the signers will be some of the industry's trusted parties

low

Iterating allProducts array can cause the gas limit to exceed

The variable allProducts maintains an array of created products. If an external smart
contract attempts to iterate over the array to validate if an address is a valid product or not,
the transaction can exceed the gas limit and fail due to the large size of the array.

Recommendation:

User enumerable sets instead of the array. Using enumerable sets provides additional
features for validating whether an address is a valid product or not in constant time O(1).
Link: https://docs.openzeppelin.com/contracts/3.x/api/utils#EnumerableSet

https://docs.openzeppelin.com/contracts/3.x/api/utils#EnumerableSet

18

Struct Finance Smart Contract Audit

low

trancheDurationMax can be less than trancheDurationMin

Description: Although the functions to set the maximum and minimum tranche duration have
onlyRole(GOVERNANCE) function modifier, decreasing the possibility of having
trancheDurationMax < trancheDurationMin in the state of the contract, the contract can
still have trancheDurationMax < trancheDurationMin.

Recommendation:

Add checks in the function setMinimumTrancheDuration() and
setMaximumTrancheDuration() to avoid this state in the contract.

low

Fees can be set greater than 100%

The variables managementFee and performanceFee can be updated using function
setManagementFee() and setPerformanceFee() respectively. Although these functions have
onlyRole(GOVERNANCE) function modifier, the contract allows setting these values to an
arbitrarily high value, which could be greater than 100%.

Recommendation:

Add validation while updating fee values in setManagementFee() and setPerformanceFee()
such that new values are within acceptable limits, e.g. not more than 100%.

Comment:

Multisig keys will be distributed and the signers will validate the fees before being set

19

Struct Finance Smart Contract Audit

low

No check for zero amount

In contract DistributionManager.sol, the function setRewardsPerSecond, there is no zero
amount check.

Recommendation:

Add the zero amount check

Comment:

It can be zero initially to avoid distributing rewards

Informational Unresolved

Gas Optimization

In contract DistributionManager.sol, In the function queueFees

`if` check condition is used for zero amount check.

In this case, if the given amount is zero, queuedNative isn’t changed, but the transaction
will be successful. So it can cause unnecessary gas consumption.

Recommendation:

Add the require check condition

20

Struct Finance Smart Contract Audit

Informational

initialize() can be called by anyone

In contract FEYTraderJoeProduct, function initialize() can be called by anyone to initialize
the product contract. This can result in incorrect values being used for initialization.

Recommendation:

Although the factory contract immediately initializes the product contract after deployment,
it is advised to add appropriate modifiers for the initialize() function as a best practice.

Comment:

The client stated that this would happen when the product contract is deployed separately
without the factory contract and stated that their comment on issue 8 would be applicable
here.

Informational

Inverted naming of variables

In contract FEYTraderJoeProduct, the naming of leverageThresholdMax and
leverageThresholdMin variables is inverted with respect to their execution logic. Inverted
naming can lead to confusion during code review.

Recommendation:

It is advised to avoid naming of variables that are the exact opposite of how they behave.

Comment:

The client acknowledged this issue, stating that this is due to the financial terms used in
traditional finance, which led them to use the following naming conventions.

20

Struct Finance Smart Contract Audit

Informational

Critical function rescueTokens it's not emmiting event

Critical function rescueTokens it's not emmiting event

It is a good practice that onlyOwner functions always emit event

https://github.com/zokyo-sec/audit-struct-finance-1/blob/audit/zokyo-feb-2023/contracts/
protocol/products/traderjoe/FEYTraderJoeProduct.sol#L506

Recommendation:

Add an event to record that owner/governance is rescuing tokens.

Informational

Governance can indefinitely disable withdrawal of user funds

In contract FEYTraderJoeProduct, function withdrawn(), allows a user to withdraw the
investment from the product once the tranche is matured. The gacPausable() modifier is
used in Withdrawn Function to check whether the contract is currently paused or not, if the
contract is paused it restrict the deposits of users

Recommendation:

Withdrawals should never be paused because it affects the decentralization nature of the
blockchain. Remove gacPausable modifier

Comment:

Governance will be a multisig.

https://github.com/zokyo-sec/audit-struct-finance-1/blob/audit/zokyo-feb-2023/contracts/protocol/products/traderjoe/FEYTraderJoeProduct.sol#L506
https://github.com/zokyo-sec/audit-struct-finance-1/blob/audit/zokyo-feb-2023/contracts/protocol/products/traderjoe/FEYTraderJoeProduct.sol#L506

21

Struct Finance Smart Contract Audit

Informational Unresolved

Wrong Function visibility.

In contract DistributionManager�
� getRecipients: this function was not called internally in the contracts, but it was

declared as public

Recommendation:

declare it as an externa�

� _validateRecipientConfig: this function doesn’t need to be called externally.

Recommendation:

declare it as an internal

In contract GACManaged.sol �
� pause: this function was not called internally in the contracts, but it was declared as

publi�
� unpause: this function was not called internally in the contracts, but it was declared as

public

Recommendation:

declare it as an external

22

Struct Finance Smart Contract Audit

Informational Unresolved

Gas Optimization

Under the hood of solidity, Booleans (bool) are uint8, which means they use 8 bits of
storage. A Boolean can only have two values: True or False. This means that you can store a
boolean in only a single bit.

https://github.com/zokyo-sec/audit-struct-finance-1/blob/audit/zokyo-feb-2023/contracts/
protocol/common/GACManaged.sol#L30

Recommendation:

Change the uint8 to uint256 to save gas

Informational Unresolved

Gas Optimization

Change the order of external contract call in _gacPausable function in GACManaged.sol

By swapping the order of the require statements, the local pause check will be performed
first, which does not require an external contract call. If it fails, the function will revert
immediately, saving the gas cost of the external contract call. Only if the local pause check
passes, the global pause check will be executed.

https://github.com/zokyo-sec/audit-struct-finance-1/blob/audit/zokyo-feb-2023/contracts/
protocol/common/GACManaged.sol#L85

Recommendation:

Change to this :

function _gacPausable() private view {

 require(!paused(), Errors.ACE_LOCAL_PAUSED);

 require(!gac.paused(), Errors.ACE_GLOBAL_PAUSED);

}

This way, the local pause check will be performed first, and if it fails, the function will revert
immediately without incurring the gas cost of the external contract call. If the local pause
check passes, only then the global pause check will be executed

https://github.com/zokyo-sec/audit-struct-finance-1/blob/audit/zokyo-feb-2023/contracts/protocol/common/GACManaged.sol#L30
https://github.com/zokyo-sec/audit-struct-finance-1/blob/audit/zokyo-feb-2023/contracts/protocol/common/GACManaged.sol#L30
https://github.com/zokyo-sec/audit-struct-finance-1/blob/audit/zokyo-feb-2023/contracts/protocol/common/GACManaged.sol#L85
https://github.com/zokyo-sec/audit-struct-finance-1/blob/audit/zokyo-feb-2023/contracts/protocol/common/GACManaged.sol#L85

PassAccess Management Hierarchy

Arithmetic Over/Under Flows Pass

FEYTraderJoeProduct.sol

FEYTraderJoeProductFactory.sol

TraderJoeYieldSource.sol

GACManaged.sol

PassDelegatecall

PassHidden Malicious Code

PassUnchecked CALL
Return Values

PassExternal Contract Referencing

PassGeneral Denial Of Service (DOS)

PassFloating Points and Precision

PassSignatures Replay

Pass
Pool Asset Security (backdoors in the
underlying ERC-20)

PassRe-entrancy

PassUnexpected Ether

PassDefault Public Visibility

PassEntropy Illusion (Lack of Randomness)

PassShort Address/ Parameter Attack

PassRace Conditions / Front Running

PassUninitialized Storage Pointers

PassTx.Origin Authentication

23

Struct Finance Smart Contract Audit

PassAccess Management Hierarchy

Arithmetic Over/Under Flows Pass

StructERC1155.sol

StructSPToken.sol

Constants.sol

Errors.sol

PassDelegatecall

PassHidden Malicious Code

PassUnchecked CALL
Return Values

PassExternal Contract Referencing

PassGeneral Denial Of Service (DOS)

PassFloating Points and Precision

PassSignatures Replay

Pass
Pool Asset Security (backdoors in the
underlying ERC-20)

PassRe-entrancy

PassUnexpected Ether

PassDefault Public Visibility

PassEntropy Illusion (Lack of Randomness)

PassShort Address/ Parameter Attack

PassRace Conditions / Front Running

PassUninitialized Storage Pointers

PassTx.Origin Authentication

24

Struct Finance Smart Contract Audit

PassAccess Management Hierarchy

Arithmetic Over/Under Flows Pass

Helpers.sol

Validation.sol

DataTypes.sols

PassDelegatecall

PassHidden Malicious Code

PassUnchecked CALL
Return Values

PassExternal Contract Referencing

PassGeneral Denial Of Service (DOS)

PassFloating Points and Precision

PassSignatures Replay

Pass
Pool Asset Security (backdoors in the
underlying ERC-20)

PassRe-entrancy

PassUnexpected Ether

PassDefault Public Visibility

PassEntropy Illusion (Lack of Randomness)

PassShort Address/ Parameter Attack

PassRace Conditions / Front Running

PassUninitialized Storage Pointers

PassTx.Origin Authentication

25

Struct Finance Smart Contract Audit

We are grateful for the opportunity to work with the team.

The statements made in this document should not be interpreted as
an investment or legal advice, nor should its authors be held
accountable for the decisions made based on them.

Zokyo Security recommends the S team put in place a bug
bounty program to encourage further analysis of the smart contract by
third parties.

 Struct Finance

truct Finance

