

Table Of Contents

1 Executive Summary

2 Audit Methodology

3 Project Overview

3.1 Project Introduction

3.2 Vulnerability Information

4 Code Overview

4.1 Contracts Description

4.2 Visibility Description

4.3 Vulnerability Summary

5 Audit Result

6 Statement

1 Executive Summary

On 2023.10.08, the SlowMist security team received the Struct Finance team's security audit application for

Struct Finance, developed the audit plan according to the agreement of both parties and the characteristics of

the project, and finally issued the security audit report.

The SlowMist security team adopts the strategy of "white box lead, black, grey box assists" to conduct a

complete security test on the project in the way closest to the real attack.

The test method information:

Test method Description

Black box testing Conduct security tests from an attacker's perspective externally.

Grey box testing
Conduct security testing on code modules through the scripting tool, observing the

internal running status, mining weaknesses.

White box

testing

Based on the open source code, non-open source code, to detect whether there are

vulnerabilities in programs such as nodes, SDK, etc.

The vulnerability severity level information:

Level Description

Critical
Critical severity vulnerabilities will have a significant impact on the security of the DeFi

project, and it is strongly recommended to fix the critical vulnerabilities.

High
High severity vulnerabilities will affect the normal operation of the DeFi project. It is

strongly recommended to fix high-risk vulnerabilities.

Medium
Medium severity vulnerability will affect the operation of the DeFi project. It is

recommended to fix medium-risk vulnerabilities.

Low

Low severity vulnerabilities may affect the operation of the DeFi project in certain

scenarios. It is suggested that the project team should evaluate and consider whether

these vulnerabilities need to be fixed.

Weakness
There are safety risks theoretically, but it is extremely difficult to reproduce in

engineering.

Suggestion There are better practices for coding or architecture.

2 Audit Methodology

The security audit process of SlowMist security team for smart contract includes two steps:

Following is the list of commonly known vulnerabilities that was considered during the audit of the smart

contract:

Serial Number Audit Class Audit Subclass

1 Overflow Audit -

2 Reentrancy Attack Audit -

3 Replay Attack Audit -

4 Flashloan Attack Audit -

5 Race Conditions Audit Reordering Attack Audit

6 Permission Vulnerability Audit

Access Control Audit

Excessive Authority Audit

7 Security Design Audit

External Module Safe Use Audit

Compiler Version Security Audit

Hard-coded Address Security Audit

Fallback Function Safe Use Audit

Show Coding Security Audit

Function Return Value Security Audit

External Call Function Security Audit

Smart contract codes are scanned/tested for commonly known and more specific vulnerabilities using

automated analysis tools.

Manual audit of the codes for security issues. The contracts are manually analyzed to look for any

potential problems.

Serial Number Audit Class Audit Subclass

7 Security Design Audit

Block data Dependence Security Audit

tx.origin Authentication Security Audit

8 Denial of Service Audit -

9 Gas Optimization Audit -

10 Design Logic Audit -

11 Variable Coverage Vulnerability Audit -

12 "False Top-up" Vulnerability Audit -

13 Scoping and Declarations Audit -

14 Malicious Event Log Audit -

15 Arithmetic Accuracy Deviation Audit -

16 Uninitialized Storage Pointer Audit -

3 Project Overview

3.1 Project Introduction

Struct Finance is a DeFi platform offering tailored structured financial products to cater to the distinct risk-return

profiles of retail and institutional investors. Our innovative Tranching mechanism, the first in our planned lineup

of product offerings, enables diversified investment opportunities across a wide array of markets through

interest rate vaults.

The core contracts include Product module, Factory module, SP Token module, YieldSource module and GAC

module.

1. Product module

The fixed and enhanced yield contract containing core functions of the protocol: depositing, claiming excess, and

withdrawals. Interacts with the Yield Source contract to supply and remove liquidity from the underlying

protocol.

2. Factory module

Creates new FEYProduct contracts (using clones) with user-defined configurations such as tranche start and end

times, tranche tokens, fixed rate, etc. It also has methods to whitelist tokens and token pairs.

3. SP Token module

An ERC1155 standard token is used to represent user's position in each tranche, Every tranche is assigned a

unique ID in the StructSPToken and is minted at a 1:1 ratio for deposits.

Note that FEYProduct and FEYProductFactory components have a new implementation for each integration

(platform). The implementation of StructSPToken remains the same, but there will be a new deployment for

each integration.

4. YieldSource module

Helps the FEYProduct contract to interact with the external protocols.

5. Global Access Control (GAC) module

Enforces the access control methods for the entire protocol implemented by the GACManaged contract which

inherits the GlobalAccessControl for the roles. All the core contracts will inherit the GACManaged contract.

3.2 Vulnerability Information

The following is the status of the vulnerabilities found in this audit:

NO Title Category Level Status

N1

Compatibility issue

between

supplyTokens function

and deflationary

tokens

Design Logic

Audit
Medium Fixed

NO Title Category Level Status

N2
Emergency

Withdrawal Deficiency

Design Logic

Audit
High Fixed

N3

Risk of protocol denial

of service by

manipulating

ammRate

Design Logic

Audit
Critical Fixed

N4
Missing of event

records
Others Suggestion Fixed

N5

Compatibility issue

between

_increaseAllowanc

eAndSwap operation

and deflationary

tokens

Design Logic

Audit
Medium Acknowledged

N6

Compatibility issue

between

redeemTokens

function and

deflationary tokens

Design Logic

Audit
Medium Fixed

N7 Gas optimization
Gas Optimization

Audit
Suggestion Acknowledged

N8
Risk of excessive

privilege

Authority Control

Vulnerability

Audit

Medium Acknowledged

N9 Redundant function
Gas Optimization

Audit
Suggestion Fixed

N10

There is a flaw in the

amountInMax

calculation when

tranche tokens are

allocated

Others Low Fixed

4 Code Overview

4.1 Contracts Description

Audit Version:

https://github.com/struct-defi/struct-core

commit: bbf16ca72dd7f271aa4daabd3ed402001574f7d1

Fixed Version:

https://github.com/struct-defi/struct-core

commit: 2582b1cc3000c73b30a6f419de598583f989a945

The main network address of the contract is as follows:

The code was not deployed to the mainnet.

4.2 Visibility Description

The SlowMist Security team analyzed the visibility of major contracts during the audit, the result as follows:

FEYAutoPoolProduct

Function Name Visibility Mutability Modifiers

initialize External Can Modify State -

invest External Can Modify State nonReentrant gacPausable

removeFundsFromLP External Can Modify State nonReentrant gacPausable

processRedemption External Can Modify State nonReentrant gacPausable

setSlippage External Can Modify State onlyRole

getTokenRate Public - -

_depositToLP Private Can Modify State -

_chargeFee Private Can Modify State -

_allocateToTranches Private Can Modify State -

getSrFrFactor Public - -

FEYProduct

Function Name Visibility Mutability Modifiers

_checkSpAndTrancheTokenBal

ances
Private - -

deposit External Payable nonReentrant gacPausable

depositFor External Payable
nonReentrant gacPausable

onlyRole

claimExcess External
Can Modify

State
nonReentrant gacPausable

withdraw External
Can Modify

State
nonReentrant gacPausable

claimExcessAndWithdraw External
Can Modify

State
nonReentrant gacPausable

rescueTokens External
Can Modify

State
onlyRole

forceUpdateStatusToWithdra

wn
Public

Can Modify

State
-

getUserInvestmentAndExcess External - -

getUserTotalDeposited External - -

getInvestorDetails External - -

getCurrentState External - -

getTrancheInfo External - -

getTrancheConfig External - -

getProductConfig External - -

_deposit Internal
Can Modify

State
validateBalances

_claimExcess Private
Can Modify

State
-

_transferTokens Private
Can Modify

State
-

_calculateUserShareAndTransf

er
Internal

Can Modify

State
-

FEYProduct

_forceUpdateStatusToWithdra

wn
Internal

Can Modify

State
-

<Receive Ether> External Payable -

initialize External
Can Modify

State
-

invest External
Can Modify

State
-

removeFundsFromLP External
Can Modify

State
-

FEYAutoPoolProductFactory

Function Name Visibility Mutability Modifiers

<Constructor> Public Can Modify State -

totalProducts External - -

createProduct External Payable gacPausable

setPoolStatus External Can Modify State onlyRole

setYieldSource External Can Modify State onlyRole

isMintActive External - -

isTransferEnabled External - -

_deployProduct Private Can Modify State -

_makeInitialDeposit Private Can Modify State -

_validateProductConfig Private - -

_validatePool Private - -

_getTrancheCapacityValues Private - -

_getInitialDepositValueUSD Private - -

FEYFactoryConfigurator

Function Name Visibility Mutability Modifiers

setStructPriceOracle External Can Modify State onlyRole

setMinimumTrancheDuration External Can Modify State onlyRole

setMaximumTrancheDuration External Can Modify State onlyRole

setManagementFee External Can Modify State onlyRole

setPerformanceFee External Can Modify State onlyRole

setLeverageThresholdMinCap External Can Modify State onlyRole

setLeverageThresholdMaxCap External Can Modify State onlyRole

setTokenStatus External Can Modify State onlyRole

setTrancheCapacity External Can Modify State onlyRole

setMaxFixedRate External Can Modify State onlyRole

setFEYProductImplementation External Can Modify State onlyRole

setMinimumDepositValueUSD External Can Modify State onlyRole

AutoPoolYieldSource

Function Name Visibility Mutability Modifiers

<Constructor> Public
Can Modify

State
-

supplyTokens External Payable
gacPausable nonReentrant

onlyRole

recompoundRewards Public
Can Modify

State
gacPausable onlyRole

queueForRedemption External
Can Modify

State

gacPausable nonReentrant

onlyRole

redeemTokens External
Can Modify

State

gacPausable nonReentrant

onlyRole

sharesToTokens External - -

AutoPoolYieldSource

setMaxIterations External
Can Modify

State
onlyRole

harvestRewards External
Can Modify

State
onlyRole

rescueTokens External
Can Modify

State
onlyRole

updateFarmInfo External
Can Modify

State
onlyRole

emergencyWithdrawFromFar

m
Public

Can Modify

State
onlyRole

emergencyWithdrawFromAut

oPool
Public

Can Modify

State
onlyRole

emergencyWithdrawAndResc

ue
External

Can Modify

State
onlyRole

_depositAPTToFarm Internal
Can Modify

State
-

_recompoundRewards Internal
Can Modify

State
-

_harvestRewards Internal
Can Modify

State
-

_increaseAllowanceAndSwap Internal
Can Modify

State
-

_recompoundRewards Internal
Can Modify

State
-

_getTokenRate Internal - -

_rescueTokens Internal
Can Modify

State
-

_updateFarmInfo Internal
Can Modify

State
-

getRoundInfo External - -

YieldSource

Function Name Visibility Mutability Modifiers

_tokenToShares Internal - -

YieldSource

_sharesToTokens Internal - -

<Receive Ether> External Payable -

StructERC1155

Function Name Visibility Mutability Modifiers

uri Public - -

setApprovalForAll Public Can Modify State -

safeTransferFrom Public Can Modify State -

safeBatchTransferFrom Public Can Modify State -

balanceOfBatch Public - -

supportsInterface Public - -

_mint Internal Can Modify State -

_batchMint Internal Can Modify State -

_batchBurn Internal Can Modify State -

_burn Internal Can Modify State -

_beforeTokenTransfer Internal Can Modify State -

_asSingletonArray Private - -

StructSPToken

Function Name Visibility Mutability Modifiers

<Constructor> Public Can Modify State -

safeTransferFrom Public Can Modify State gacPausable

safeBatchTransferFrom Public Can Modify State gacPausable

mint Public Can Modify State gacPausable onlyRole

StructSPToken

mintBatch Public Can Modify State gacPausable onlyRole

burn Public Can Modify State onlyRole gacPausable

burnBatch Public Can Modify State onlyRole gacPausable

_beforeTokenTransfer Internal Can Modify State gacPausable

setURI External Can Modify State onlyRole

setFeyProductFactory External Can Modify State onlyRole

_setURI Internal Can Modify State -

uri Public - -

supportsInterface Public - -

Rewarder

Function Name Visibility Mutability Modifiers

<Constructor> Public
Can Modify

State
-

allocateRewards External
Can Modify

State

nonReentrant gacPausable

onlyRole

claimRewards External
Can Modify

State
nonReentrant gacPausable

rescueTokens External
Can Modify

State
nonReentrant onlyRole

calculateRewards Public - -

_calculateRewardForTranc

he
Internal - -

_validateAllocateRewards Internal - -

getAllocationDetails Public - -

4.3 Vulnerability Summary

[N1] [Medium] Compatibility issue between supplyTokens function and deflationary tokens

Category: Design Logic Audit

Content

In the AutoPoolYieldSource contract, the supplyTokens function will transfer srToken and jrToken from

PRODUCT, which are used to deposit to autoPoolVault and update the corresponding shares.

Unfortunately, deflationary tokens are not handled in the function. When srToken and jrToken are deflationary

tokens, the number of tokens received by the AutoPoolYieldSource contract will be less than the _amountAIn

and _amountBIn deposited to autoPoolVault. This will prevent the autoPoolVault contract from successfully

transferring srToken and jrToken, and ultimately result in PRODUCT being unable to perform normal invest

operations.

Code location: contracts/protocol/yield-sources/AutoPoolYieldSource.sol#L221

 function supplyTokens(uint256 _amountAIn, uint256 _amountBIn)

 external

 payable

 gacPausable

 nonReentrant

 onlyRole(PRODUCT)

 returns (uint256 _investedTokenA, uint256 _investedTokenB)

 {

 ...

 tokenA.safeTransferFrom(msg.sender, address(this), _amountAIn);

 tokenB.safeTransferFrom(msg.sender, address(this), _amountBIn);

 ...

 (, _investedTokenA, _investedTokenB) = autoPoolVault.deposit(_amountAIn,

_amountBIn);

 ...

 }

Solution

It is recommended that the supplyTokens function obtains the balance difference between srToken and jrToken

tokens before and after the transfer as _amountAIn and _amountBIn to deposit to autoPoolVault.

Consider the following fixes:

 function supplyTokens(uint256 _amountAIn, uint256 _amountBIn)

 ...

 {

 ...

 uint256 _amountAInBefore = tokenA.balanceOf(address(this));

 uint256 _amountBInBefore = tokenB.balanceOf(address(this));

 tokenA.safeTransferFrom(msg.sender, address(this), _amountAIn);

 tokenB.safeTransferFrom(msg.sender, address(this), _amountBIn);

 _amountAIn = tokenA.balanceOf(address(this)) - _amountAInBefore;

 _amountBIn = tokenB.balanceOf(address(this)) - _amountBInBefore;

 (, _investedTokenA, _investedTokenB) = autoPoolVault.deposit(_amountAIn,

_amountBIn);

 ...

 }

Status

Fixed

[N2] [High] Emergency Withdrawal Deficiency

Category: Design Logic Audit

Content

In the AutoPoolYieldSource contract, the GOVERNANCE role can perform emergency withdrawals from farm and

autoPoolVault contracts through the emergencyWithdrawAndRescue, emergencyWithdrawFromAutoPool and

emergencyWithdrawFromFarm functions. However, in the emergencyWithdrawFromAutoPool function only the

value of totalAutoPoolShareTokens is cleared and not the value of totalShares , which will result in an

error at the step of calculating the number of shares on the next investment, and the contract won't work

properly.

Code Location: contracts/protocol/yield-sources/AutoPoolYieldSource.sol#L431-434

 function emergencyWithdrawFromAutoPool() public onlyRole(GOVERNANCE) {

 totalAutoPoolShareTokens = 0;

 autoPoolVault.emergencyWithdraw();

 }

Solution

It is recommended that the value of totalShares is also cleared when making an emergency withdrawal. In the

meantime, make sure the product is in a suspended state.

Status

Fixed

[N3] [Critical] Risk of protocol denial of service by manipulating ammRate

Category: Design Logic Audit

Content

In the FEYAutoPool protocol, it compares the token price rate obtained from the Chainlink oracle and Traderjoe

LBQuoter to check whether there is a large deviation in the price. The next step will be taken when the price

check passes, otherwise revert will be performed.

When the price is obtained through findBestPathFromAmountIn of the Traderjoe LBQuoter contract, it will check

all the pools of v1, v2, and v2.1 to obtain the largest amountOut during swap as the optimal price. However, it

should be noted that the amountIn parameter passed in when calling the findBestPathFromAmountIn function

of the FEYAutoPool protocol is only 1 token amount. This would allow a malicious user to cost-effectively create a

low-liquidity but high-price pair in some version of Traderjoe DEX, causing the ammRate to deviate far from the

chainlinkRate. by making the validPrice false in this way, it would never pass the subsequent price checking,

causing the The FEYAutoPool protocol is at risk of being denied service.

Code location:

contracts/protocol/yield-sources/AutoPoolYieldSource.sol#L545-L547

contracts/protocol/yield-sources/AutoPoolYieldSource.sol#L636-L637

 function _getTokenRate(address _asset1, address _asset2, address[] memory _path)

 internal

 view

 returns (bool, uint256, uint256, uint256)

 {

 ...

 ILBQuoter.Quote memory quote =

 lbQuoter.findBestPathFromAmountIn(_path, uint128(10 **

IERC20Metadata(_asset1).decimals()));

 ...

 }

 function _increaseAllowanceAndSwap(uint256 _amount, IERC20Metadata _token,

address[] memory _path) internal {

 ...

 (bool _validPrice, uint256 _exchangeRate,,) = _getTokenRate(address(_token),

_path[_path.length - 1], _path);

 require(_validPrice, Errors.PFE_RATEDIFF_EXCEEDS_DEVIATION);

 ...

 }

contracts/protocol/libraries/helpers/Helpers.sol#L265-L296

 function getTrancheTokenRateV2(

 IStructPriceOracle _structPriceOracle,

 address[] storage _path,

 ILBQuoter _lbQuoter,

 uint256 _amountOut

) external view returns (bool, uint256, uint256, uint256) {

 ...

 if (_amountOut == 0) {

 quote = _lbQuoter.findBestPathFromAmountIn(_path, uint128(10 **

IERC20Metadata(_path[0]).decimals()));

 // no need to divide by the amountIn because it is equivalent to WAD

 _ammRate = tokenDecimalsToWei(IERC20Metadata(_path[1]).decimals(),

quote.amounts[1]);

 } else {

 _amountOut = weiToTokenDecimals(IERC20Metadata(_path[1]).decimals(),

_amountOut);

 quote = _lbQuoter.findBestPathFromAmountOut(_path, uint128(_amountOut));

 _ammRate = tokenDecimalsToWei(IERC20Metadata(_path[1]).decimals(),

quote.amounts[1]) * Constants.WAD

 / tokenDecimalsToWei(IERC20Metadata(_path[0]).decimals(),

quote.amounts[0]);

 }

 ...

 }

Solution

When getting the best price via findBestPathFromAmountIn, the balance of all tokens owned by the current

contract should be queried as amountIn.

Status

Fixed

[N4] [Suggestion] Missing of event records

Category: Others

Content

There is no corresponding event logged when a sensitive parameter in the contract is modified.

Code Location:

contracts/protocol/products/autopool/FEYAutoPoolProduct.sol#L276-279

 function setSlippage(uint256 _newSlippage) external onlyRole(GOVERNANCE) {

 require(_newSlippage < Constants.MAX_SLIPPAGE, Errors.VE_INVALID_SLIPPAGE);

 slippage = _newSlippage;

 }

contracts/protocol/tokenization/StructSPToken.sol#L177-187

 function setFeyProductFactory(IFEYFactory _feyProductFactory) external

onlyRole(GOVERNANCE) {

 feyProductFactory = _feyProductFactory;

 }

 ...

 function _setURI(string memory newuri) internal virtual {

 _uri = newuri;

 }

Solution

It is recommended to record events when sensitive parameters are modified for self-inspection or community

review.

Status

Fixed; The project team response: we decided to skip the event of the _setURI as we will not be calling the

function.

[N5] [Medium] Compatibility issue between _increaseAllowanceAndSwap operation and

deflationary tokens

Category: Design Logic Audit

Content

In the AutoPoolYieldSource contract, when performing the _recompoundRewards operation, the

_increaseAllowanceAndSwap function will be used to swap the joeToken and rewardToken2 tokens into

srToken and jrToken for compound interest. It should be noted that rewardToken2 may be a deflationary token,

and in the _increaseAllowanceAndSwap function, only the swapExactTokensForTokens interface of the

lbRouter contract is used for token exchange, but this interface is not suitable for the exchange of deflationary

tokens. Therefore, if APT_FARM exists and rewardToken2 is a deflationary token, the protocol will not be able to

perform compound interest operations.

Code location:

contracts/protocol/yield-sources/AutoPoolYieldSource.sol#L563

contracts/protocol/yield-sources/AutoPoolYieldSource.sol#L599

 function _recompoundRewards(uint256 _reward1Harvested, uint256 _reward2Harvested,

uint256 _wavaxBalanceBefore)

 internal

 {

 ...

 if (numRewards > 1 && _reward2Harvested > 0) {

 if (address(_rewardToken2) != address(tokenA) && address(_rewardToken2) !=

address(tokenB)) {

 if (isReward2Native) {

 IWETH9(WAVAX).deposit{value: _reward2Harvested}();

 } else {

 if (address(rewardToken2) != address(WAVAX)) {

 _increaseAllowanceAndSwap(_reward2Harvested, _rewardToken2,

reward2ToNativeSwapPath);

 }

 }

 _hasNativeReward = true;

 }

 }

 ...

 }

 function _increaseAllowanceAndSwap(uint256 _amount, IERC20Metadata _token,

address[] memory _path) internal {

 ...

 lbRouter.swapExactTokensForTokens(_amount, _minOut, _route, address(this),

block.timestamp + 1);

 }

Solution

It is recommended to use the try-catch method in the _increaseAllowanceAndSwap function for token

exchange. First call the swapExactTokensForTokens interface to try swap, and when it fails, try to use the

swapExactTokensForTokensSupportingFeeOnTransferTokens interface for swap.

Status

Acknowledged; The project team response: We made an attempt at your suggestion, but ultimately decided to

not implement it because we cannot effectively test

swapExactTokensForTokensSupportingFeeOnTransferTokens without a token that takes a fee on transfer, and

none of the existing autopool tokens nor rewards have a fee on transfer. If TraderJoe ever lists an autopool with

a token that takes a fee on transfer, we can implement this logic specifically for that yield source contract. In the

case where one of the reward tokens for an existing autopool becomes a fee on transfer token, we will rescue all

tokens from the yield source and deploy it with the fix.

[N6] [Medium] Compatibility issue between redeemTokens function and deflationary tokens

Category: Design Logic Audit

Content

In the AutoPoolYieldSource contract, the keeper role redeems the invested funds by calling the redeemTokens

function. This function calls the redeemQueuedWithdrawal() method on the AutoPoolVault contract and then the

vault contract sends the tokens to the AutoPoolYieldSource contract. It should be noted that the received tokenA

and tokenB tokens may be deflationary tokens. In the case of deflationary tokens, the actual number of tokens

received from vault will be less than the tokenAReceived or tokenBReceived returned, which will then lead to

incorrect share calculations afterwards.

Code Location: contracts/protocol/yield-sources/AutoPoolYieldSource.sol#L333

 function redeemTokens() external gacPausable nonReentrant onlyRole(KEEPER) {

 ...

 (uint256 tokenAReceived, uint256 tokenBReceived) =

 autoPoolVault.redeemQueuedWithdrawal(_roundId, address(this));

 for (uint256 _productIndex; _productIndex < _productsLength;) {

 uint256 _tokenARedeemed =

 _roundInfo.shares[_productIndex].mulDiv(tokenAReceived,

_roundInfo.totalShares);

 uint256 _tokenBRedeemed =

 _roundInfo.shares[_productIndex].mulDiv(tokenBReceived,

_roundInfo.totalShares);

 ...

 }

 ...

 }

 ...

 }

Solution

It is recommended that the redeemTokens function use the difference between the balances of tokenA and

tokenB before and after receiving as tokenAReceived and tokenBReceived to calculate share.

Status

Fixed

[N7] [Suggestion] Gas optimization

Category: Gas Optimization Audit

Content

In the FEYAutoPoolProduct contract, the initialize function uses the necessary parameters to initialize the

product. It saves the necessary information of srToken and jrToken through _srDecimals , _jrDecimals ,

trancheTokenSr , trancheTokenJr global variables. But this information has already been recorded in

trancheConfig, and there is no need to spend additional gas to store the already stored information.

In the Helpers contract, the getInvestedAndExcess function is used to obtain the user's investment amount and

its excess. When prefixSum - depositAmount < invested , it will recalculate userInvested and excess, but it

does not return directly after the calculation is completed, but recalculates the excess parameter again, which is

unnecessary.

Code location:

contracts/protocol/products/autopool/FEYAutoPoolProduct.sol#L75-L76

contracts/protocol/products/autopool/FEYAutoPoolProduct.sol#L86-L90

 function initialize(

 ...

) external override {

 ...

 trancheConfig[DataTypes.Tranche.Senior] = _initConfig.configTrancheSr;

 trancheConfig[DataTypes.Tranche.Junior] = _initConfig.configTrancheJr;

 ...

 _srDecimals = _initConfig.configTrancheSr.decimals;

 _jrDecimals = _initConfig.configTrancheJr.decimals;

 trancheTokenSr = _initConfig.configTrancheSr.tokenAddress;

 trancheTokenJr = _initConfig.configTrancheJr.tokenAddress;

 ...

 }

contracts/protocol/libraries/helpers/Helpers.sol#L87-L90

 function getInvestedAndExcess(DataTypes.Investor storage investor, uint256

invested)

 external

 view

 returns (uint256 userInvested, uint256 excess)

 {

 ...

 if (prefixSum - depositAmount < invested) {

 userInvested += (depositAmount + invested - prefixSum);

 excess = investor.userSums[length - 1] - userInvested;

 }

 }

 excess = investor.userSums[length - 1] - userInvested;

 }

Solution

If the design is not intended, we recommend only saving necessary parameters through trancheConfig. And

when the modifications to userInvested and excess are completed, return the getInvestedAndExcess function.

Status

Acknowledged; The team project response: we agreed that it is redundant, but we are reading the token

decimals and token addresses multiple times hence we initially had to load the entire trancheConfig struct into

memory every time just to read the token decimals which incurred more gas, iirc. so we decided to store the

values seperately.

[N8] [Medium] Risk of excessive privilege

Category: Authority Control Vulnerability Audit

Content

In the FEYProduct contract, the GOVERNANCE role can transfer any ERC20 tokens away from a product contract

by calling the rescueTokens function. If the privilege is lost or misused, this may have an impact on the user's

assets.

In the FEYFactoryConfigurator contract, the GOVERNANCE role can set the performanceFee by calling the

setPerformanceFee function. If the privilege is lost or misused, this may have an impact on the user's assets.

And the GOVERNANCE role can withdraw investment funds from autoPoolVault to the specified address through

the emergencyWithdrawAndRescue function in the AutoPoolYieldSource contract. Performing this operation

when there is no emergency in the contract will bring huge risks to the user's funds.

Code Location: contracts/protocol/products/FEYProduct.sol#L178-180

 function rescueTokens(IERC20Metadata _token, address _recipient) external

onlyRole(GOVERNANCE) {

 _token.safeTransfer(_recipient, Helpers._getTokenBalance(_token,

address(this)));

 }

contracts/protocol/products/FEYFactoryConfigurator.sol#L127-130

 function setPerformanceFee(uint256 _performanceFee) external onlyRole(GOVERNANCE)

{

 performanceFee = _performanceFee;

 emit PerformanceFeeUpdated(_performanceFee);

 }

contracts/protocol/yield-sources/AutoPoolYieldSource.sol#L441-L448

 function emergencyWithdrawAndRescue(address _recipient) external

onlyRole(GOVERNANCE) {

 emergencyWithdrawFromFarm();

 emergencyWithdrawFromAutoPool();

 uint256 _amountA = tokenA.balanceOf(address(this));

 uint256 _amountB = tokenB.balanceOf(address(this));

 _rescueTokens(tokenA, _amountA, _recipient, false);

 _rescueTokens(tokenB, _amountB, _recipient, false);

 }

Solution

The role of GOVERNANCE is that multi-signature contracts can well mitigate single-point risks, but it still cannot

completely solve the excessive special effects risks involving user funds. Therefore, for the rescueTokens and

emergencyWithdrawAndRescue functions, it is a better solution to transfer the recovered funds to a specific

contract. The contract is supervised by the community, and the operations involving funds in the contract are

controlled through the time lock contract, and the contract address Should be hardcoded into the protocol. This

can well solve the community trust problem.

Status

Acknowledged; After communicating with the project team, the project team stated that the team plans to use

governance management privileged roles in the future to completely address this risk.

[N9] [Suggestion] Redundant function

Category: Gas Optimization Audit

Content

In the Helpers contract, the getTrancheTokenRate function is not used by other contracts in the protocol, and

there is currently a getTrancheTokenRateV2 function that replaces getTrancheTokenRate. Therefore

getTrancheTokenRate is a redundant function.

Code location: contracts/protocol/libraries/helpers/Helpers.sol#L230-L255

 function getTrancheTokenRate(

 IStructPriceOracle _structPriceOracle,

 address _asset1,

 address _asset2,

 address[] storage _path,

 IJoeRouter _router

) external view returns (bool, uint256, uint256, uint256) {

 ...

 }

Solution

If the design is not expected, it is recommended to remove redundant functions.

Status

Fixed

[N10] [Low] There is a flaw in the amountInMax calculation when tranche tokens are allocated

Category: Others

Content

In the FEYAutoPoolProduct contract, the _allocateToTranches function is used to allocate tranche tokens.

When _jrToSwap < _receivedJr , it will be exchanged for tokens through the _swapToExact function. In the

_swapToExact function, it will use slippage to calculate _amountInMax , but when the difference between

_jrToSwap and _receivedJr is very small, the value of _amountInMax may exceed _receivedJr .

Therefore, the amountIn required for the swapTokensForExactTokens operation may exceed _receivedJr ,

which will cause the jrToken token balance in the contract to be unable to meet the swap requirements,

ultimately causing the _allocateToTranches operation to fail.

The current MEV situation is extremely common, so this error is very likely to occur when the difference between

_jrToSwap and _receivedJr is small.

Code location: contracts/protocol/products/autopool/FEYAutoPoolProduct.sol#L441

 function _allocateToTranches(uint256 _receivedSr, uint256 _receivedJr, uint256

_srFrFactor) private {

 ...

 } else if (_receivedSr < _srFrFactor) {

 ...

 } else {

 _swapToExact(_seniorDelta, juniorTokenToSeniorTokenSwapPath,

address(this));

 }

 }

 }

Solution

It is recommended that amountInMax be no larger than _receivedJr .

Status

Fixed

5 Audit Result

Audit Number Audit Team Audit Date Audit Result

0X002310170001 SlowMist Security Team 2023.10.08 - 2023.10.17 Medium Risk

Summary conclusion: The SlowMist security team uses a manual and SlowMist team's analysis tool to audit the

project, during the audit work we found 1 critical risk, 1 high risk, 4 medium risk, 1 low risk, and 3 suggestions. All

the findings were fixed or acknowledged. The code was not deployed to the mainnet. Due to excessive privilege

issues, the audit conclusion of the current protocol is medium risk. The project team plans to deploy governance

for managing privileged roles in the near future to address this risk.

6 Statement

SlowMist issues this report with reference to the facts that have occurred or existed before the issuance of this

report, and only assumes corresponding responsibility based on these.

For the facts that occurred or existed after the issuance, SlowMist is not able to judge the security status of this

project, and is not responsible for them. The security audit analysis and other contents of this report are based

on the documents and materials provided to SlowMist by the information provider till the date of the insurance

report (referred to as "provided information"). SlowMist assumes: The information provided is not missing,

tampered with, deleted or concealed. If the information provided is missing, tampered with, deleted, concealed,

or inconsistent with the actual situation, the SlowMist shall not be liable for any loss or adverse effect resulting

therefrom. SlowMist only conducts the agreed security audit on the security situation of the project and issues

this report. SlowMist is not responsible for the background and other conditions of the project.

