
DEDAUB.COM

Struct Finance
Struct-Core Contracts
Smart Contract Security Assessment

May 30, 2022

DEDAUB.COM

ABSTRACT
Dedaub was commissioned to perform an audit on the struct-core contracts on branch
audit/dedaub-may-2022 and commit hash
c2277351bab3d1629879d4eeacd61d4700e184a7. The audited contracts list is the
following:

products/FEYProduct.sol
products/FEYProductFactory.sol
common/GACManaged.sol
common/GlobalAccessControl.sol
common/StructPriceOracle.sol
types/DataTypes.sol
logic/Validation.sol
libraries/helpers/Helpers.sol
libraries/helpers/Constants.sol
tokenization/StructERC1155.sol
tokenization/StructSPToken.sol
adapters/TraderJoeLpAdapter

Some external contracts in close interaction with the system were also inspected, in
essence Trader Joe’s Masterchef and Router contracts and Chainlink’s oracle contracts
on Avalanche.

Two auditors worked on the codebase over two weeks.

Se�ing & Caveats
The audited codebase is of moderate size of ~3.5KLoC,

The audit’s main target is security threats, i.e., what the community understanding
would likely call "hacking", rather than regular use of the protocol. Functional

01

https://github.com/struct-defi/struct-core/tree/audit/dedaub-may-2022

DEDAUB.COM

correctness (i.e. issues in "regular use") is a secondary consideration. Functional
correctness relative to low-level calculations (including units, scaling, quantities
returned from external protocols) is generally most e�ectively done through thorough
testing rather than human auditing.

Architecture and High-Level Recommendations
Struct Finance aims to provide structured products in the Decentralized Finance
ecosystem, in essence “products that combine baskets of di�erent derivatives, such as
interest rate products and options, to create a vehicle that can be tailored to a wide array
of di�erent risk pro�les”.

The audited codebase includes two main contracts, FEYProductFactory and FEYProduct.
Contract FEYProduct (Fixed and Enhanced Yield Product) includes all the logic for
swapping the yield and risk of two sets of investors over a speci�c interest rate product.
The two sets of investors are called tranches and are those of Fixed and Enhanced Yield,
which can also be expressed as Low and High Risk. The interest rate product is that of
liquidity providing (LP) in a Trader Joe’s AMM pool. Once a FEYProduct is created –
meaning that a new contract is deployed and is con�gured regarding the chosen AMM
pool, the �xed yield rate, the duration of the investment period, etc. – users can deposit
amounts in any of the two pool’s tokens. Each pool’s token represents a tranche in the
Struct investment environment, so by depositing an amount of a token the investors
automatically choose their risk position.
After the deposit period is over, the invested amounts are ready to be deposited into the
pool. The pool requires equal value of the two tokens to be deposited as liquidity, so in
case of unbalanced tranches some amount is �rst swapped from the token in excess to
the one in shortage. Swap transactions are required by the protocol in some other cases
too, for example when harvesting the LP token staking-rewards and redepositing them
as liquidity to the pool. Though the design has taken measures against sandwich a�acks,
we have outlined some thoughts regarding such a�acks in case of large swapped
amounts in issue L2.

02

DEDAUB.COM

Contract FEYProductFactory allows whitelisted users to con�gure and create their own
FEY products. Two kinds of fees are applied: performance and management fees.
Performance fees are applied only in case of a pro�table investment period and is a rate
on the total pro�ts. The protocol keeps a percentage of the total fees accrued, while the
rest of it is transferred to the FEY product creator.

A number of sensitive parameters of the protocol remain con�gurable - only by
governance - after the project’s deployment and initialization. Such parameters are, for
example, the maximum allowed capacity deviation between the two tranches,
performance fee rate and management fee rate. At the time of writing, the Struct
Finance team is focused on developing the core functionality of the system and the
governance entity is currently a simple multisignature. The team plans to add timelock
functionality to the current scheme and, furthermore, upgrade the governance
procedures to a more decentralized solution in a later stage of the project.

The codebase is generally well-wri�en and is accompanied by a large test suite.

VULNERABILITIES & FUNCTIONAL ISSUES
This section details issues that a�ect the functionality of the contract. Dedaub generally
categorizes issues according to the following severities, but may also take other
considerations into account such as impact or di�iculty in exploitation:

Category Description

CRITICAL Can be pro�tably exploited by any knowledgeable third party a�acker
to drain a portion of the system’s or users’ funds OR the contract does
not function as intended and severe loss of funds may result.

HIGH Third party a�ackers or faulty functionality may block the system or

03

DEDAUB.COM

cause the system or users to lose funds. Important system invariants
can be violated.

MEDIUM Examples:
-User or system funds can be lost when third party systems misbehave.
-DoS, under speci�c conditions.
-Part of the functionality becomes unusable due to programming
errors.

LOW Examples:
-Breaking important system invariants, but without apparent
consequences.
-Buggy functionality for trusted users where a workaround exists.
-Security issues which may manifest when the system evolves.

Issue resolution includes “dismissed”, by the client, or “resolved”, per the auditors.

CRITICAL SEVERITY:
[No critical severity issues]

HIGH SEVERITY:

ID Description STATUS

H1 Typographic errors could cause severe faulty functionality RESOLVED

In FEYProductFactory::_deployProduct the following lines are dead code:

04

DEDAUB.COM

_configTrancheSr.spTokenId == latestSpTokenId + 1;
_configTrancheJr.spTokenId == latestSpTokenId + 2;

_configTrancheSr.decimals == _configTrancheSr.tokenAddress.decimals();
_configTrancheJr.decimals == _configTrancheJr.tokenAddress.decimals();

They seem to be typographic errors - the above dead statements should be
assignments, meaning “==” should be “=”, so that the system assigns the spTokenId
values of the tranches. The tests did not recognize these errors because, within the
tests, these 4 tranches’ con�guration parameters are manually assigned to the correct
values.
This could completely block the system’s functionality, since tranche’s token id could
be assigned to wrong values, given as parameters by an a�acker, a�ecting not only
the problematically initialized tranche itself but the whole system.

The Struct Finance team immediately con�rmed and resolved this issue.

MEDIUM SEVERITY:

ID Description STATUS

M1 Legacy code may cancel part of the rewards RESOLVED

In Helpers::_swapAndAddLiquidity the accrued reward amounts are supposed to be
swapped against senior/junior pool tokens and added into the pool as liquidity.
Amounts _reward1ToSwap and _reward2ToSwap, which are passed as parameters, do
not hold the total contract’s balance of the corresponding reward token but the pure
value of reward amounts accrued.
However, code is wri�en like these variables hold the whole contract’s balance,
resulting in excluding part of the rewards to be swapped and added as liquidity into the
pool:

05

DEDAUB.COM

function _swapAndAddLiquidity(
address _tokenSr,
address _tokenJr,
uint256 _srTokenExcess,
uint256 _jrTokenExcess,
DataTypes.Addresses calldata _addresses,
DataTypes.SwapPath calldata _path,
bool _isDualReward,
uint256 _reward1ToSwap,
uint256 _reward2ToSwap

) public {
// ...
if (address(_addresses.reward1) == _tokenSr) {

// Dedaub: _reward1ToSwap holds the pure reward1 accrued amount
if (_reward1ToSwap > _srTokenExcess) _reward1ToSwap -= _srTokenExcess;
// ...

} else if (address(_addresses.reward1) == _tokenJr) {
if (_reward1ToSwap > _jrTokenExcess) _reward1ToSwap -= _jrTokenExcess;
// ...

} else { // ...
}

}

if (_isDualReward) {
// Dedaub: _reward1ToSwap holds the pure reward2 accrued amount
if (address(_addresses.reward2) == _tokenSr) {

if (_reward2ToSwap > _srTokenExcess) _reward2ToSwap -= _srTokenExcess;
// ...

} else if (address(_addresses.reward2) == _tokenJr) {
if (_reward2ToSwap > _jrTokenExcess) _reward2ToSwap -= _jrTokenExcess;

}
}

}

The Struct Finance team immediately con�rmed and resolved this issue by removing
the legacy lines of code.

06

DEDAUB.COM

LOW SEVERITY:

ID Description STATUS

L1 Use of safeIncreaseAllowance instead of safeApprove OPEN

In many cases the system needs to approve amounts to external contracts (i.e.,
contracts of Joe Trader’s system). This is implemented using the increaseAllowance
functionality of ERC20 tokens, for example:

function _increaseAllowanceAndAddLiquidty(
IJoeRouter router,
address _tokenSr,
address _tokenJr,
uint256 _srTokenExcess,
uint256 _jrTokenExcess

) private {
// ...
IERC20Metadata(_tokenSr).safeIncreaseAllowance(address(router), _srToAdd);
IERC20Metadata(_tokenJr).safeIncreaseAllowance(address(router), _jrToAdd);
// ...

}

We don’t see any reason to use safeIncreaseAllowance instead of the simpler
safeApprove. On the contrary, it would be a good practice to use safeApprove in order
to ensure no remaining approvals are aggregated in the external contracts, which
would mean linking the approved amounts to any potential security risk of those
contracts.

L2 Swapping investment amounts could be susceptible to
sandwich a�acks

OPEN

There are several of cases where a swap transaction needs to take place within an
investment period:
1. After the protocol’s deposit phase is over, the tranches’ investment amounts are
adjusted and added as liquidity in the corresponding AMM pool. Adjustment is needed

07

DEDAUB.COM

in case of value deviation between the deposits of the two tranches, since liquidity
providing requires an equal value of the two pool’s assets to be deposited. This is
handled by swapping part of one tranche’s excessive investments into the other
tranche’s asset, so as to calibrate the value held in the two tranches. This adjustment
step is expected to take place in most investment periods, since users can freely
deposit any amount in a tranche without restrictions (entry point is
FEYProduct::invest).
2. When an investment period is over, the product's investments are withdrawn from
the LP and the funds are properly allocated to the senior and junior tranches (entry
point is FEYProduct::removeFundsFromLP).
3. Any time during the INVESTED state of an investment period, rewards can be claimed
and are swapped against the pool’s assets and added as liquidity (entry point is
FEYProduct::harvestAndRecompound).

The following precautions have been taken to protect these swaps from sandwich
a�acks:
a. onlyEOAOrRole modi�er, where Role denotes a whitelisted entity. The check for EOA
account is not e�ective and can be worked around be an a�acker. Consider, for
example, an a�acker who submits a bundle of transactions to be mined to MEV nodes.
b. The AMM’s price is checked against the price calculated using Chainlink’s oracles
and the deviation is required to lie within a speci�c range.

Precaution a. cannot e�ectively protect against sandwich a�acks, since any adversary
can still work around the onlyEOA restriction.
Precaution b. does o�er a level of protection, by bounding an a�ack’s risk and
consequences. The current implementation suggests that if the AMM’s price does not
deviate *much* from the oracle’s price, then it is safe for the swap to be performed and
the slippage protection is applied in respect to the AMM’s price (via se�ing the
minAmountOut variable). However, if the swapped amount is fairly large then it could
still be pro�table for an adversary to perform the a�ack: she can tilt the pool as much
as possible, up to the point that the AMM’s price stays just within the accepted
deviation range, let the victim swap transaction be executed and then untilt the pool
to take the pro�t from the bad swap.

08

DEDAUB.COM

For this a�ack to be pro�table the pool should be of moderate or small size, so as to be
tiltable, while the swapped amount should be fairly large so as to recover for: the
transaction fees, the swap fees and any other external fees needed (e.g. MEV bribes).
In swap cases 1&2 the swapped amounts concern investment amounts and could be
expected to be large, even though the two tranches’ deposits are not allowed to
deviate arbitrarily much (maximum deviation is set to 5%). A stricter precaution for
these cases would be to apply the slippage protection directly on the oracle’s price,
instead of that of the AMM’s. Also in case of extremely large amounts (also in
comparison to the pool’s size), another solution would be to incrementally perform a
swap in a number of swap transactions executed in separate blocks, so as to lower the
swapped amounts and make the a�ack unpro�table.
In swap case 3 the swap amount concerns accrued rewards and are not expected to be
signi�cantly large if the harvestAndRecompound function is called at a regular basis. For
this reason, we suggest having a keeper contract taking care that this function is
called often enough.

OTHER/ADVISORY ISSUES:

This section details issues that are not thought to directly a�ect the functionality of the
project, but we recommend considering them.

ID Description STATUS

A1 Gas optimizations OPEN

1. There are several places where a function’s local variable reads from storage and is
declared storage instead of memory, though it is only read and never wri�en. Similarly
for some cases of function parameters.

/// Helpers::getInvestedAndExcess
uint256[] storage prefixSums_ = investor.depositSums;

09

DEDAUB.COM

/// Helpers::chargeFees
function chargeFees(

uint256 _tokensDepositedSr,
uint256 _tokensAtMaturitySr,
uint256 _tokensDepositedJr,
uint256 _tokensAtMaturityJr,
// Dedaub: declare the next two as memory instead of storage
DataTypes.TrancheConfig storage _trancheConfigSr,
DataTypes.TrancheConfig storage _trancheConfigJr,
uint256 _creatorFee,
// Dedaub: declare as memory instead of storage
DataTypes.ProductConfig storage _productConfig

) external returns (uint256, uint256) { ... }

/// FEYProduct.sol
function removeFundsFromLP()

external
override
nonReentrant
onlyEOAOrRoles(_msgSender(), gac.keeperWhitelistedRoles())

{
// ...

// Dedaub: declare as memory instead of storage
DataTypes.TrancheConfig storage _trancheConfigSr =

trancheConfig[DataTypes.Tranche.Senior];
DataTypes.TrancheConfig storage _trancheConfigJr =

trancheConfig[DataTypes.Tranche.Junior];
// ...

}

function _calulateUserShareAndTransfer(DataTypes.Tranche _tranche) private {
// Dedaub: declare as memory instead of storage
DataTypes.TrancheInfo storage _trancheInfo = trancheInfo[_tranche];
DataTypes.TrancheConfig storage _trancheConfig = trancheConfig[_tranche];

// ...
}

function _chargeFee(
// Dedaub: declare as memory instead of storage

010

DEDAUB.COM

DataTypes.TrancheConfig storage _trancheConfigSr,
DataTypes.TrancheConfig storage _trancheConfigJr

) private { /// ... }

A2 Code simpli�cation OPEN

1. In Helpers::getInvestedAndExcess code can be simpli�ed by calculating excess
value only once at the end of the function’s body:

function getInvestedAndExcess(DataTypes.Investor storage investor, uint256
invested)

external
view
returns (uint256 userInvested, uint256 excess)

{
// ...

uint256 prefixSum = prefixSums_[leastUpperBound];
if (prefixSum == invested) {

// Not all deposits got in, but there are no partial deposits
userInvested = investor.userSums[leastUpperBound];
// Dedaub: same calculation of ‘excess’ as in the rest of the cases
excess = investor.userSums[length - 1] - userInvested;

} else {
userInvested = leastUpperBound > 0 ? investor.userSums[leastUpperBound -

1] : 0;
uint256 depositAmount = investor.userSums[leastUpperBound] - userInvested;
if (prefixSum - depositAmount < invested) {

userInvested += (depositAmount + invested - prefixSum);
// Dedaub: same calculation of ‘excess’ as in the rest of the cases
excess = investor.userSums[length - 1] - userInvested;

} else {
// Dedaub: same as above
excess = investor.userSums[length - 1] - userInvested;

}
}

011

DEDAUB.COM

}

could become:

function getInvestedAndExcess(DataTypes.Investor storage investor, uint256
invested)

external
view
returns (uint256 userInvested, uint256 excess)

{
// ...

uint256 prefixSum = prefixSums_[leastUpperBound];
if (prefixSum == invested) {

// Not all deposits got in, but there are no partial deposits
userInvested = investor.userSums[leastUpperBound];

} else {
userInvested = leastUpperBound > 0 ? investor.userSums[leastUpperBound -

1] : 0;
uint256 depositAmount = investor.userSums[leastUpperBound] - userInvested;
if (prefixSum - depositAmount < invested) {

userInvested += (depositAmount + invested - prefixSum);
}

}
excess = investor.userSums[length - 1] - userInvested;

}

2. In Helpers::getTrancheTokenRate getAssetPrice is redundantly called twice for each
tranche’s token:

function getTrancheTokenRate(
IStructPriceOracle _structPriceOracle,
address _asset1,
address _asset2,
address[] storage _path,
IJoeRouter _router

)

012

DEDAUB.COM

external
view
returns (bool, uint256, uint256, uint256)

{
uint256 _priceAsset1 = getAssetPrice(_structPriceOracle, _asset1);
uint256 _priceAsset2 = getAssetPrice(_structPriceOracle, _asset2);

uint256 _chainlinkRate = (
// Dedaub: already calculated above as _priceAsset1,_priceAsset2
((getAssetPrice(_structPriceOracle, _asset1) * 10**18) /

getAssetPrice(_structPriceOracle, _asset2))
);
// ...

}

We suggest simplifying the code for improved readability and gas savings.

A3 Unused variables OPEN

1. In TraderJoeLpAdapter.sol state variable
address public product;

is unused.

2. In FEYProduct.sol state variable
address private productFactory;

is assigned during the contract’s initialization but never used.

A4 Dead code OPEN

013

DEDAUB.COM

1. In StructPriceOracle::getAssetPrice there is a redundant sanity check on chainlink’s
return variables:

function getAssetPrice(address asset) public view override returns (uint256) {
(uint80 roundId, int256 price, , , uint80 answeredInRound) =

assetsSources[asset]
.latestRoundData();

// Dedaub: chainlink's ‘EAC’ version is used, the following check is a no-op
require(roundId == answeredInRound, "OUTDATED");
// ...

}

The above check is recommended when using Chainlink’s ‘Flux’ aggregators contracts,
but on Avalanche a later version (called ‘EAC’) of aggregator contracts is deployed,
which maintains the same signature of function latestRoundData for backwards
compatibility but values roundId and answeredId are always identical.
For reference: AggregatorProxy contract, O�chainAggregator contract

2. Data structure TrancheInfo contains the �eld tokensInvested which is assigned a
value for both tranche types in FEYProduct::invest:
trancheInfo[DataTypes.Tranche.Senior].tokensInvested = Helpers.tokenDecimalsToWei(

trancheConfig[DataTypes.Tranche.Senior].decimals,
_investedSr

);

trancheInfo[DataTypes.Tranche.Junior].tokensInvested = Helpers.tokenDecimalsToWei(
trancheConfig[DataTypes.Tranche.Junior].decimals,
_investedJr

);

However, this struct’s �eld is never used in the codebase.

A5 Constant variables OPEN

014

https://snowtrace.io/address/0x3CA13391E9fb38a75330fb28f8cc2eB3D9ceceED#code
https://snowtrace.io/address/0xcb7f6ef54bdc05b704a0acf604a6a16c53d359e1#code

DEDAUB.COM

There are a few constant values that remain hard-coded as follows:
1. In FEYProduct.sol
slippage = 30 * 10**3; //3%

2. In FEYProductFactory.sol
require(_productConfig.fixedRate < 750000, "INVALID_RATE");

We suggest assigning these values to constant variables for readability and
maintenance.

A6
StructToken rewards are divided equally when tranches
are unbalanced.

OPEN

In the FEYProduct contract, the number of structToken rewards available for
distribution to investors of a boosted product is calculated when the
removeFundsFromLP() function is called.

if (isBoosted) {

/// Check structToken balance before
uint256 _balanceBefore = IERC20Metadata(structToken)

.balanceOf(address(this));

/// Call productBooster contract to indicate that rewards
/// should stop
structProductBooster.fundsRemoved(address(this));

/// Check structToken balance after to record the amount of
/// struct tokens rewards allocated - structRewards
/// Rewards are divided by two since there are two tranches
structRewards =

(IERC20Metadata(structToken)
.balanceOf(address(this)) - _balanceBefore) / 2;

}

015

DEDAUB.COM

This amount of available StructToken rewards is divided by two and stored in the
structRewards state variable. This represents the amount of tokens to be distributed to
investors in each of the Senior and Junior tranches. Hence investors in the Junior and
Senior tranches obtain exactly the same amount of rewards even if the assets invested
in the Junior and Senior tranches are unbalanced (because one of the tranches is
leveraged). This in turn can lead to an uneven distribution of structToken rewards
relative to assets invested.

This issue was discussed with the Struct Finance team who con�rmed that this is the
intended functioning of the protocol.

We advise disclosure of this protocol behavior to potential investors in the public facing
documentation.

A7 Function tokenDecimalsToWei() truncates decimal places OPEN

The FEYProduct contract keeps track of deposited assets by scaling down the assets so
that they �t into 18 decimal places. This is achieved through the use of the
Helpers::tokenDecimalsToWei() function.

function tokenDecimalsToWei(uint256 _decimals, uint256 _amount) public pure
returns (uint256) {

return (_amount * Constants.WEI) / 10**_decimals;
}

When the original number of decimals needs to be recovered in order to send funds to
an AMM or return them to a user, the assets are scaled up again using the function
Helpers::weiToTokenDecimals().

016

DEDAUB.COM

Now if the asset in question has n > 18 decimals, the function
Helpers::tokenDecimalsToWei() becomes lossy and truncates the least signi�cant n -
18 decimal places. This means that upon this conversion, the remaining dust remains
trapped in the FEYProduct contract and is never invested or returned to the user.

While the amounts in question may not be signi�cant, we advise disclosure of this
behaviour to potential investors in the public facing documentation.

A8 Misleading comment OPEN

There is a misleading comment in the FEYProductFactory contract:

/// @dev Address of the Struct price oracle
IDistributionManager public distributionManager;

A9 Compiler known issues INFO

Solidity compiler version v0.8.11 has, at the time of writing, some known bugs. We
inspected the code and found that it is not a�ected by these bugs.

017

https://github.com/ethereum/solidity/blob/develop/docs/bugs_by_version.json

DEDAUB.COM

018

DEDAUB.COM

DISCLAIMER
The audited contracts have been analyzed using automated techniques and extensive
human inspection in accordance with state-of-the-art practices as of the date of this
report. The audit makes no statements or warranties on the security of the code. On its
own, it cannot be considered a su�icient assessment of the correctness of the contract.
While we have conducted an analysis to the best of our ability, it is our recommendation
for high-value contracts to commission several independent audits, as well as a public
bug bounty program.

ABOUT DEDAUB
Dedaub o�ers technology and auditing services for smart contract security. The
founders, Neville Grech and Yannis Smaragdakis, are top researchers in program
analysis. Dedaub’s smart contract technology is demonstrated in the
contract-library.com service, which decompiles and performs security analyses on the
full Ethereum blockchain.

019

